Convergence of Rothe Scheme for Hemivariational Inequalities of Parabolic Type
نویسندگان
چکیده
This article presents the convergence analysis of a sequence of piecewise constant and piecewise linear functions obtained by the Rothe method to the solution of the first order evolution partial differential inclusion u′(t)+Au(t)+ι∗∂J(ιu(t)) 3 f(t), where the multivalued term is given by the Clarke subdifferential of a locally Lipschitz functional. The method provides the proof of existence of solutions alternative to the ones known in literature and together with any method for underlying elliptic problem, can serve as the effective tool to approximate the solution numerically. Presented approach puts into the unified framework known results for multivalued nonmonotone source term and boundary conditions, and generalizes them to the case where the multivalued term is defined on the arbitrary reflexive Banach space as long as appropriate conditions are satisfied. In addition the results on improved convergence as well as the numerical examples are presented.
منابع مشابه
A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملOptimal Control Problems for Parabolic Hemivariational Inequalities with Boundary Conditions
In this paper, we study optimal control problems for parabolic hemivariational inequalities of dynamic elasticity and investigate the continuity of the solution mapping from the given initial value and control data to trajectories. We show the existence of an optimal control which minimizes the quadratic cost function and establish the necessary conditions of optimality of an optimal control fo...
متن کاملModeling, analysis and optimal control of systems described by hemivariational inequalities
In the paper we present a survey on the mathematical modeling of nonconvex and nonsmooth problems arising in the mathematical theory of contact mechanics which is a growing field in engineering and scientific computing. The approach to such problems is based on the notion of hemivariational inequality and our presentation focuses on three aspects. First we present the ideas leading to inequalit...
متن کاملTwo Remarks on the Stability of Generalized Hemivariational Inequalities
The present paper is devoted to the stability analysis of a general class of hemivariational inequalities. Essentially, we present two approaches for this class of problems. First, using a general version of Minty’s Lemma and the convergence result of generalized gradients due to T. Zolezzi [23], we prove a stability result in the spirit of Mosco’s results on the variational inequalities [14]. ...
متن کامل