Convergence of Rothe Scheme for Hemivariational Inequalities of Parabolic Type

نویسندگان

  • PIOTR KALITA
  • P. KALITA
چکیده

This article presents the convergence analysis of a sequence of piecewise constant and piecewise linear functions obtained by the Rothe method to the solution of the first order evolution partial differential inclusion u′(t)+Au(t)+ι∗∂J(ιu(t)) 3 f(t), where the multivalued term is given by the Clarke subdifferential of a locally Lipschitz functional. The method provides the proof of existence of solutions alternative to the ones known in literature and together with any method for underlying elliptic problem, can serve as the effective tool to approximate the solution numerically. Presented approach puts into the unified framework known results for multivalued nonmonotone source term and boundary conditions, and generalizes them to the case where the multivalued term is defined on the arbitrary reflexive Banach space as long as appropriate conditions are satisfied. In addition the results on improved convergence as well as the numerical examples are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

Optimal Control Problems for Parabolic Hemivariational Inequalities with Boundary Conditions

In this paper, we study optimal control problems for parabolic hemivariational inequalities of dynamic elasticity and investigate the continuity of the solution mapping from the given initial value and control data to trajectories. We show the existence of an optimal control which minimizes the quadratic cost function and establish the necessary conditions of optimality of an optimal control fo...

متن کامل

Modeling, analysis and optimal control of systems described by hemivariational inequalities

In the paper we present a survey on the mathematical modeling of nonconvex and nonsmooth problems arising in the mathematical theory of contact mechanics which is a growing field in engineering and scientific computing. The approach to such problems is based on the notion of hemivariational inequality and our presentation focuses on three aspects. First we present the ideas leading to inequalit...

متن کامل

Two Remarks on the Stability of Generalized Hemivariational Inequalities

The present paper is devoted to the stability analysis of a general class of hemivariational inequalities. Essentially, we present two approaches for this class of problems. First, using a general version of Minty’s Lemma and the convergence result of generalized gradients due to T. Zolezzi [23], we prove a stability result in the spirit of Mosco’s results on the variational inequalities [14]. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013